O
USING CGl witH LABVIEW

The secret of achievement is not to let what you’re doing get to
you before you get to it.
—Lloyd Cory

Overview of CGI
What Is CGI?

When you’re surfing the Web, you probably come across sites
that make you wonder, “How did they do that?” These docu-
ments could consist of, among other things, forms that ask for
feedback or registration information, imagemaps that allow you
to click on various parts of the image, counters that display the
number of users that accessed the document, and utilities that
allow you to search databases for particular information. In
most cases, you’ll find that these effects were achieved using the
Common Gateway Interface, commonly known as CGI. You can
put the power of CGI to work for LabVIEW as well.

CGl is one of the “older” Web technologies, but still widely
used and often very convenient to implement for an interactive
Web site. Although several other technologies now exist for
interactive sites (some of which were described in Chapter 8,

266

Chapter 9 Using CGI with LabVIEW

Advanced Web Technologies: An Overview), CGI was the first such standard for
the Web that allowed a user to call external routines remotely in a platform-
independent manner.

CGl is a standard specification that lets HTTP servers run other programs
on the server machine. It provides a mechanism for passing parameters
to those programs and sending their output (usually an HTML page) back to
the Web browser. CGI is useful anytime a user attribute or input is used in
determining what content the Web server will send to the user. For example,
using CGI you could design an e-commerce application that processes mer-
chandise orders through a Web browser. The CGI application would take the
user’s credit card information, send the data to an external credit card verifi-
cation program, and then post the approval and shipping information back
to the Web browser, confirming the transaction. The end user never “sees”
the external credit card verification program, but can still send it data and
get results back through a standard Web browser. In some senses, a CGI
application is just like a function: It takes input and produces output. By
having the ability to call external routines through CGl, you can build pow-
erful, platform-independent client-server Web applications, since now you
are not limited to HTTP commands. (See Figure 9-1.)

WWW Browser Server Application
(on client)

—— 12 - » CGI

FQRM Submit completed form Call CGI
/ AN CGl PN cesl 7
// >~ <Program's — ~ ™ < Program's —~
response response
User
Figure 9-1

The CGI specification does not define what language can be used for the
external programs. In fact, CGI does not care at all what the external pro-
grams look like; it only defines the interface between the HTTP server and
the external code. You can write code to handle CGI applications in C, C++,
Visual Basic, Perl, and . . . LabVIEW, of course! Most commercial-application
CGI programs are written in Perl or C. Perl is a interpreted, text-based lan-
guage that is freeware and very popular with Web developers. Perl is well

Overview of CGI 267

suited for handling and parsing strings in ways that would be much more
complicated to do with other languages. You can find more information
about Perl at http://www.perl.org. But, of course, in this book, we will show
you how to write CGI applications with LabVIEW.

It’s fair to say that CGI is much more complicated than the Web technolo-
gies we’ve seen so far. An in-depth treatment on writing CGI applications
requires another whole book in itself (check C, References, for some sugges-
tions). However, you don’t need to become an expert in CGl and HTTP to
build simple applications, especially with LabVIEW. This chapter will show
you how to get started in building an interactive Web system with Lab-
VIEW—just be aware that it does not cover everything about CGI.

Why CGI?

So far, the LabVIEW-Web technologies we have examined have all been
restricted to monitoring a VI. That works fine if all you need is to retrieve
information from LabVIEW, but what if you need to send data back to Lab-
VIEW without leaving the Web browser? With CGlI, you will be able to create
applications where you can control, as well as monitor, your VI or LabVIEW
itself through a Web browser interface. CGlI is one of three choices for Web-
based control of VIs (virtual instruments); in later chapters, we will examine
how you can also use Java and ActiveX technologies (see Figure 9-2).

The Internet Toolkit for LabVIEW provides a complete set of CGI

Requires VIs that can be used to create CGI applications (see Figure 9-3).
Internet
Toolkit

With these CGI Vs, you can do things such as:

Allow a user to load and run a VI dynamically from a Web browser

Fill out an HTML form that will feed the inputs to VI, and publish
the results back to the Web browser

Set up security schemes for access to VIs (user authorization and
authentication)

Have LabVIEW create dynamic HTML pages on the fly (e.g., a
Web counter)

268 Chapter 9 « Using CGI with LabVIEW

(web browser)

1
CGl Vs
Web Server
? EmETmT—n
LabVIEW

Data Socket
3

Data Socket
Figure 9-2

The three methods for Web control of LabVIEW

= Use imagemaps to let users click on different parts of a VI's panel
image, simulating the behavior of a VI as if it were inside the Web
browser

= Publish static and animated images of a VI

= Keep state information about a users who have visited the server
by using cookies

Some More Background on CGI 269

B Internet Toolkit B3
CGl Vis

=T
P |Mail |Telnet
L

| *[Rrre]
£61 —Hcal vis
TG | [query | |URL=| [#urL ¥
Info || = ||[8w]] |[om] HTHML
>
5]
TGl [T C
bom| | LT 1]
Cliet | [Client | [Client
| [||
o
(81 | [(31 || 53

Figure 9-3
The CGI Vls palette

Tim

SHe

Some More Background on CGl
How CGI Works

First, let’'s understand how CGI works in general; and second, we will see
how it is specifically implemented in LabVIEW with the Internet Toolkit.

When you provide a URL to a Web server, requesting a static document,
the server simply returns the document’s contents. However, when a user
wants to provide data to the Web server, he or she must be able to enter or
click some kind of data on the Web browser. The most common way of enter-
ing data on a Web page is through an HTML form. An HTML form is simply
an HTML document that contains special HTML tags that, when displayed
in the browser, show up as textboxes, checkboxes, radio buttons, buttons,
selection boxes, and so forth, that a user can fill out. Users can enter data in
other ways, such as clicking on an imagemap or even clicking on a link; we’ll
talk about these scenarios as well.

270 Chapter 9 Using CGI with LabVIEW

When a Web browser asks for a URL that points to a CGI application (such
as submitting an HTML form), three steps occur:

1. The Web browser sends an HTTP request to the Web server. This
request includes the name and location of the CGI application, and
all the input parameters to the application.

2. The HTTP server then calls the external CGI application, passing it
the input parameters. The server also makes environment variables
available to the program. HTTP environment variables are part of the
CGI specification, and contain data like the time and date of the
request, the browser version, the IP address of the client, and so on.

3. When the CGI application finishes executing, it returns its out-
put to the Web browser. This output is treated by the Web browser
like any other HTML document; the browser cannot tell the differ-
ence between this generated output and static data.

Many Web servers let you specify a special directory where the CGl

application program should reside. This directory is often called

"cgi - bi n" (for CGlI binaries, or executables). In reality, it doesn’t

matter too much where the CGI application resides. On the Internet

y—————— Toolkit, the HTTP server installation places a directory called " cgi -
bi n" in the Web root directory. So, any VI that acts as your CGl
application should normally reside inside this directory.

Although CGI is a general specification, the implementation details are
specific to the HTTP server you are using. That is, you must understand how
your Web server works and how to configure it for CGI programs, where to
place them, and so on. So, if you need to call LabVIEW VIs through CGl, you
should use the Internet Toolkit’s HTTP server since it readily handles CGI
VIs; using another Web server instead would be tricky, to say the least. (Con-
versely, if you decide to write your CGI apps in C or Perl, you would not
want to use the G Web server).

Important Terms and Concepts You Need to Know to Use CGlI

At the very beginning, learning CGI is sometimes a challenge because it’s
hard to talk about a concept without making reference to another concept

Some More Background on CGI 271

You should install and test that your Internet Toolkit Web server is
working properly, since all of the CGI examples in this chapter
require that you are running the Internet Toolkit HTTP server. Refer to
you documentation for help. This also means you should not be
———————— running the built-in Web server in LabVIEW at the same time. When
you run the Internet Toolkit’s HTTP server, make sure the LabVIEW
Web server is disabled (in the Edit>>Preferences--Web
Server:Configuration dialog). Otherwise, the Internet Toolkit HTTP
server and the examples will not work correctly.

that has yet to be defined. In this section, I’ll briefly go over some of the
important terms and concepts that will be the background for building a
CGl application. Don’t worry if all of it doesn’t make sense at first; after
reading this section, study an example and then come back for references.
Or, feel free to skip ahead to the CGI processing forms example, and
come back to here later.

We’ll take a look at:

Parameter strings
Keyed arrays
Environment variables
Cookies

Then we’ll spend some time looking at the interfaces normally used on the
Web browser for CGI:

Forms
Imagemaps

Parameter Strings

A CGlI application starts with an HTTP request from the browser, and usually
ends with an HTTP response from the server. When the browser makes an
HTTP request, it sends several pieces of data to the server. In particular, the
server receives a set of parameters. Each parameter has a variable and a value
associated with it. For example, a CGI application may be expecting as input
three parameters: the name of a person, his or her age, and his or her sex.

272

Chapter 9 Using CGI with LabVIEW

Table 9-1 CGI Parameters

Variable Value
Name John Smith
Age 25

Sex Male

The parameters are passed to the CGI as one whole string in the HTTP
request, in a format known as a URL-encoded parameter string, or just
parameter string for short. A parameter string is a list of ampersand (&)-separated
vari abl e = val ue parameter pairs with proper URL encoding (see
Chapter 6, How the World Wide Web Works, for information on URL encod-
ing); for example (remember “%20” means a space):

Name=John%20Sm t h&Age=25&Sex=Mal e

Sometimes the parameters are also referred to as form data or form
parameters, since they often come from an HTML form that a user fills out.

How do the form parameters get sent from the Web browser to the Web
server? One of the most common ways, known as the GET method, is to place
the parameter string in the query string section of a URL. Remember that a URL
can optionally have a “?”” character after its host name and path. The string that
immediately follows the “?” character is the query string. For example:

http://my.lv.server/cgi-bin/data.vi?
Name=John%20Smi t h&Age=25&Sex=Mal e

Notice that this URL points to a CGI application (“data.vi”) and includes a
query string that has all the parameters we’ve been exemplifying. Obviously,
it would be impractical for users to know and remember the correct syntax
and type this URL directly into a Web browser— this is almost never done;
we’ll see how HTML forms can generate the query strings automatically.

A query string in a URL does not necessarily mean a CGI application is

being called. The query string is more generic: it is an optional

component of a URL. For example, consider how the G Web server

parses query strings that start with * ?. noni t or " in a special way to
e create a front panel image, without any CGI being involved. However,

CGil applications do often make heavy use of query strings.

Some More Background on CGlI

273

Activity 9.1

To see how query strings work, and how a CGlI application can run them, do

the following:

1. Make sure the Internet Toolkit’s Web server is running and con-
figured in its default way (i.e., the root Web directory points to the
/i nternet/ hone in the LabVIEW directory so that you can view

the ITK’s online examples).
2. From your Web browser, open

http://127.0.0. 1/ exanpl es/get_sgl.htm
and

http://127.0.0.1/ exanples/get_mt.htm

which will take you to some CGI Query examples as part of the

Internet Toolkit.

3. Try the three links and observe the URL textbox in your browser

and the results displayed, as shown in Figure 9-4.

7 CGI Parameter - Netscape
File Edit “iew Go Communicator Help

Wy A D e oW S & 3
s Back Forward Reload Home Search Metzcape Frint Security Stop

v W'thookmarks J‘ Location:Ihttp:.-".-"Ioc:alh0st.-"c:gi-bin.-"examples.-"get_sgl.vi?helloX2DworId j @v\w’hat's Fielated

! wi'ebbd ail Contact People ‘rellow Pages Download Find Sites Ci Channels
CGI Parameter

The Query string 15 "hello world"

’E == | |Document: Done

Figure 9-4

274

Chapter 9 Using CGI with LabVIEW

Keyed Arrays

A keyed array is a special data structure that isn’t very common to languages
like LabVIEW. Keyed arrays contains key-value pairs®. An element of the
array is indexed by its key (a string type), rather than a numeric index. For
example, in a “normal’ array of strings:

a = ["Polo", "Colunbus", "Armstrong"]
you reference the values of the array by the numeric index. For example:

a[0] = "Pol 0"
a[1] =" Col unbus"

In a keyed array, you instead assign a string key to reference the value of
every element. For example:

k = ["Marco", "Pol 0", "Christopher","Col unbus", "Neil","Arnstrong"]
so that you can reference a value by its key:

k["Marco"] = "Pol 0"
k[" Chi st opher"] = "Col unmbus"

Keyed arrays are very handy for dealing with lists of data, as they allow
you to store data in an array and use meaningful keys to be associated with
their values. Keyed arrays are frequently used in CGI programs, as a method
of organizing and working with form parameters. For example, the query
string we looked at earlier could be represented on the server program as a
keyed array.

Table 9-2
Key Value
Name John Smith
Age 25
Sex Male

In the CGI palette, you can find a whole subpalette for working with keyed
arrays in Internet Toolkit>>CGI VIs>>Keyed Array VIs. The keyed arrays

* In Perl, they are called associative arrays.

Some More Background on CGI 275

The concept of an “order” for keyed arrays is not relevant, like it is
for normal arrays. In particular, never rely on your key-value pairs
being sorted in a certain order within a keyed array, as the
application software will arrange them internally to its liking. You can

y—————— only access the array in terms of its keys and values, and not in an
auto-indexing manner.

are represented internally as an array of clusters; each cluster contains a
“key” and a “value” string. There are functions for adding, retrieving, and
deleting values from a keyed array, comparing two keyed arrays for equality,
and others. Refer to the online documentation for the specifics of how each
function works (see Figure 9-5).

B Internet Toolkit B3
CGl Vis

2w 2
FTP | Mail |Telnet
=T

g

~—HICGI Vis
Keyed Amray ¥ls

TG | [query | [URL=| [#0RL ¥
Infa || = | |[0-w]| |[Ew] HTHML
E
[oe]
I
[o-]| [[0-]] [[0-m]
1| &dd | |Index| | Keys \
e "EEEE
Client | [Client] [Client Rem | |Clear| [= || []
S| || [+

Figure 9-5
Keyed array VIs in the Internet Toolkit

—HKeyed Amay Vis
Keyed Amray Yalues. vi

[B-m]
4l

2

Cant

7
5]

CGI Environment Variables

CGI environment variables are simply global variables describing the HTTP
environment and CGI session that the server program can access, such as the
client’s IP address, the server name, the server software version, the query

276

Chapter 9 Using CGI with LabVIEW

string, and so forth. Every server provides environment variables, and the
Internet Toolkit Server is no exception. In the Internet Toolkit, the environ-
ment variables are stored in an array called “env”.

When a CGl application is called in LabVIEW, the server passes it environ-
mental information in the env array. This array contains information about
the server application, the browser application, server and browser
addresses, protocol version, and so forth. The env array also contains query
information, if any, that was sent with the request. Table 9-3 is the list of CGI
environment variables your VIs can access.

Table 9-3

Environment Variable

Description

GATEWAY_| NTERFACE

Version of the interface, currently CGI/1.1.

SERVER_SCOFTWARE

Name and version of the G Web Server.

SERVER NAME Name of the computer running the G Web Server as
configured or determined by the server.

SERVER_PORT TCP port at which the server listens for requests.

DOCUMENT _ROOT Root directory, in Unix format, of your server documents.

REMOTE_HOST Domain name or IP address of the remote system the
client uses to connect.

REMOTE_ADDR IP address of the remote system the client connects from.

SCRI PT_NAME Virtual path to the CGI VI.

REQUEST _METHOD

Method by which you invoke the CGlI, either GET or POST.

SERVER_PROTOCOL

Protocol over which the client communicates with the
server, currently HTTP/1.0.

HTTP_REFERER

URL of document that contains the link that invoked
this CGL.

HTTP_USER_AGENT

Browser software the remote client uses.

HTTP_ACCEPT List of MIME-like types that the browser understands.
QUERY_STRI NG URL-encoded parameters sent to this CGI.
REMOTE_USER Username of client.

REMOTE_| DENT User password of client.

Some More Background on CGlI

277

Activity 9.2

Here you’ll examine the values of the environment variables, by running the
online examples in the Internet Toolkit. With the Internet Toolkit’s Web

server running as in the previous exercise, point your browser to

http://127.0.0. 1/ exanpl es/ envi ron. ht m

and try the different links. As shown in Figure 9-6, you’ll see what the values
of the env variable look like.

equest Contents - Net

File Edit “iew Go Communicator Help

scape =1oLx]|

: A D4 o W o & @

Back Fomsard Feload Home Search Metscape Print Security Stap

wa! " Bockmarks \& Location: Ihttp:Jz’localhostz’cgi-bin#params.vi j @' what's Related

wiebhd ail Contact People “rellow Pages Download Find Sites ci Channels

Request Contents

EITV

[CATEWAY_INTERFACE [CGI/ 1

|SERVER_SOFTWAR_E

[G_Web_Servers5.0

[SERVER_NAME

[169.254.132.93

[SERVER_PORT

20

[DOCUMENT_ROOT

|J'DJ’Apphcationstab’\u’IEWfintemetfhome

[REMOTE_HOST

[127.001

[REMOTE_ADDR [127.00.1

[REMOTE_PORT [1156

[SCRIPT_NAME |regi-binfparams vi
[REQUEST_METHOD |GET

[SERVER_FROTOCOL [ETTEM.0

[HTTP_REFERER Ittp-#lo calho stiexamplesfenviron htm
[HTTP_CONNECTION [eep-Alive

[HTTP_USER_AGENT

MMozilla/d 61 [en] (Win98; 7)

[HTTP_ACCEPT

|imagefgjf, image/z-zhitmap, mage/jpeg, nage/pipeg, magepng,

*f

[HTTP_ACCEPT_ENCODING [gzip

[HTTP_ACCEPT_LANGUAGE |en

|HT TP _ACCEPT_CHARSET |iso-8859- 1,*utf-8

[SERVER_PUSH_AGENT

[TRUE

@ == |Dacument: Done

Figure 9-6

278

Chapter 9 Using CGI with LabVIEW

Cookies

One of the complications for some CGI programs is how to maintain “state”;
that is, how to remember what parameters had what values as a user navi-
gates through a site. This problem arises because HTTP is a stateless proto-
col. Each time a client wants a document from a server, the client must
establish a new connection and send a request. The server receives the
request, returns a reply, and closes the connection. The server does not main-
tain state information between individual connections. The HTTP server has
no idea if you just filled out a form and are visiting the site for the 14th time,
or if it is your first visit. In addition, HTTP can’t “remember” anything if the
page reloads or the user is directed to another page.

Often, it is useful to maintain state information across several connections.
For example, imagine you are an online vendor. When a user browses through
your online catalog, he or she can add items to a shopping cart. When the user
finishes shopping, he or she can choose to purchase the items in the cart. You
must maintain the information about the items until the user finishes the pur-
chase. You can store information, such as what items the user chose, in a simple
data file. However, this does not work if more than one user is shopping at a
time. Because you want to work with multiple users, you must find an alter-
native information storage method. You can choose from several approaches
to maintain client-state information across multiple accesses. For example,
you can insert information you collect into hidden fields of an HTML form,
or you can use the infamous cookie.

A cookie is a token that uniquely identifies some information. Client-side
cookies allow you to store a small amount of data (a 4K limit imposed by the
browser) on the client’s browser. Server-side cookies keep this same infor-
mation on the server; however, server-side cookies automatically expire after
a given time.

In the shopping cart example, you could use a cookie to record all the
items the user has put into the shopping cart. Using a cookie, you can main-
tain your information on the client side or on the server side.

Not all browsers support client-side cookies, and some users don’t like
using them and will disable them. In general, it’s best to avoid client-side
cookies if you can, unless you want to be able to store persistent data on all
your users’ browsers.

Some More Background on CGI 279

Cookies have probably gotten a lot more bad press than they
deserve. Many people feel that they infringe on their privacy or
present a security hole on a commercial site. While this can very
occasionally be the case, most of the time, cookies are very small,
harmless bits of data that are simply used to facilitate a CGl script.

With LabVIEW, you can use Internet Toolkit VIs to create, write to, and
read from both client- and server-side cookies. The server-side cookie func-
tions are in Internet Toolkit>>CGI VIs>>Cookie Vs (see Figure 9-7).

B Internet Toolkit B3
CGl Vis

g2 e 2’
FIP_ | Mail_|Telnet
2

~—HICGI Vs
Cookie ¥ls

G| Query URL-» »UR 5
] [HTHML

¥
=i m (0]

3

] (] [es] (o]

CGl | [CGI_ | [[o—w] ! Cookie Create_vi
= = RREEE
Chert | [Glent | [Chient ew 0| (O

=L =2 AL a=N

E .
JPEG | | PHG

Figure 9-7
Cookie Vis palette

~—HiCookie Vis

For each server-side cookie you create, you must add data entries as key-
value pairs. The information in server-side cookies is stored in a keyed array.

Client-side cookies can be created, written to, and read from, using the VIs
from Internet Toolkit>>CGl VIs, in the fourth and fifth rows (see Figure 9-8).

280

Chapter 9 Using CGI with LabVIEW

B Internet Toolkit B3

CGl Vs

2w 2
T"P M;-;.l Telnet

UHL PDP
—D=0|:ﬁ| \I"Is

G
53
= g [C]
CGl [0 ¥
bom| | LT 1]
Client | [[Client] [Glient
2= *=
(81 | [(31 || 53

Figure 9-8
Client-side Cookie Vls

Activity 9.3

To see an example of maintaining state with server-side cookies, run the fol-
lowing Internet Toolkit example. With the ITK Web server running, point
your browser to:

http://1 ocal host/exanpl es/ck_clnt. htm

and follow the example.

To see an example of maintaining state with client-side cookies, do the fol-
lowing:

1. In your browser, change your preferences to be “Warn me before
accepting a cookie.” In Netscape 4.x, go to Edit>>Prefer-
ences>>Advanced. In Internet Explorer 5., go to Tools>>Internet
Options>>Security>>Custom Level...>>“Allow Cookies That
Are Stored On Your Computer” and choose “Prompt.”

Some More Background on CGlI

281

You can revert these settings later, but this will allow you to see
when the cookie is sent to the browser.

2. Point your browser to:
http://1 ocal host/exanpl es/ custom htm

and follow the example. (See Figure 9-9.)

Specifying Colors - Hetscape

File Edit “iew Go Communicator Help

A N e m oS & @
Fieload Home Search Metzcape Frint Security Stop i,
“ " Bookmarks A Location: Ihttp:.-".-"Iocalhost.-"c:gi-bin.-"examples.-"c:olors.vi.-"examples.-"c:lrsform.htm j @v Wwhat's Related

wi'ebbd ail Contact People ‘rellow Pages Download Find Sites @ Channels

G Web Server Examples

Back Farard

Specify Colors
The following links [y S > | is using for

The server localhost

wizhes to zet a cookie that will be zent only back to itself
The name and value of the cookie are:
bgcolor=%23FFCCCC

translating documer @

o Image
Thiz cookie will persist until Sat Oct 09 19:35:04 1933

Do you wish to allow the cookie to be set?

Default - Cancel |
Black - -
Dark Red Text Light Red Background
Dark Green Text Light Green Background
Dark Blue Text Light Blue Background

Default Text and Background Colors and Images

= == |

|E0nnect: Host localhost contacted. 'waiting for reply...

Figure 9-9

282 Chapter 9 Using CGI with LabVIEW

Forms and Imagemaps

Forms

HTML Forms are the most prevalent way to gather input for a CGI applica-
tion. On the client side, forms are built exclusively with HTML and are com-
prised of text input boxes, radio buttons, checkboxes, pull-down menus, and
clickable images, all nested inside a <FORM> tag. The CGI application on
the server side doesn’t know or care what the form looks like on the
browser; all it needs is the form parameters to process the request. So, to
work with forms, we’ll need to expand on the knowledge of HTML tags we
began with in Chapter 6.

First, let’s look at an example the HTML tag that encloses a form, the
<FORM> tag:

<f or m name="M/Formi acti on="/cgi-bi n/process_formvi" method="CGT">

</ form

The form tag uses an optional name attribute, a required action attribute
and a required method attribute:

The name is any string name you want to give it.

The action is a URL (absolute or relative) that tells the Web server
what CGI program it should call when the form is submitted.

The method specifies how the data is sent to the server. There are
two methods: GET and POST.

When using LabVIEW CGils, the “action” attribute will point to the top-
level CGI VI you designed to handle the form. The form data can be passed
to the CGI application by the GET method or the POST method. GET and
POST refer to how data are passed in the HTTP session. With GET, the form
parameters are automatically URL-encoded into the query string. With
POST, the form parameters are passed in the header information of the
HTTP request. To see the difference between GET and POST, do the follow-
ing activity.

Some More Background on CGI 283

Activity 9.4

With the Internet Toolkit Web server running, open your browser to the
following URL:

http://1 ocal host/exanpl es/post_mt.htm

There are two forms on this page. One uses the GET method, and the other
the POST method. Notice that the final result is exactly the same on the
returned Web page; however, the GET method shows the URL-encoded
query string in the browser’s location bar.

So when should you use GET or POST? As a very general rule of
mw thumb, your VIs will normally be easier to program if you use the
9 GET method, since the CGlI VIs have some utilities for easily
\ parsing the query string that contains the parameters when the GET
y—————— data is sent.
A situation when you should use POST instead, however, is if you
are passing a password or other sensitive information to a CGl. The
reason for this is that if you were to use GET, the password would be
part of the URL, which may end up being stored in the cache or
history of the browser. This leaves open a potential security hazard
since someone could discover a password by examining the
browser’s history URLs.

Now let’s create an actual form in HTML that you will later use.

Activity 9.5 Creating an HTML Form

You will create an HTML form in this activity. Do the following:

1. In a text editor, type the following HTML code. Pay special atten-
tion to the syntax.

284

Chapter 9 Using CGI with LabVIEW

<HTM_>
<HEAD>
<TI TLE>Cal cul at or Fornx/ Tl TLE>
</ HEAD>
<BODY BGCOLOR=" #FFFFFF" >
<Hl ALI GN=CENTER>A Wb cal cul at or </ H1>
<FORM METHOD="POST" ACTI ON="/cgi - bi n/cal cul ator.vi">
<I NPUT TYPE="text" SIZE="8" VALUE="12.5" NAME="T1">
<SELECT NAME="operation">
<OPTI ON VALUE="+" SELECTED>+
<OPTI ON VALUE="-">-
<OPTI ON VALUE="*">*
<OPTI ON VALUE="/">/
</ SELECT>
<I NPUT TYPE="text" SIZE="8" VALUE="3.2" NAME="T2">
<pP>
Base Not ati on:

<I NPUT TYPE="r adi 0" NAME="base" VALUE="Deci mal"
CHECKED>Deci nal

<I NPUT TYPE="r adi 0" NANME="base" VALUE="Hex">Hex

<P>
<I NPUT TYPE="checkbox" NAME="errorcheck">Perform error
checki ng.
<P>
<| NPUT TYPE="hi dden" NAME="Heh-heh" VALUE="This is our
little secret">
<pP>
<I NPUT TYPE="subm t" VALUE="Cal cul ate Result">

<| NPUT TYPE="reset" >
</ FORM>
</ BODY>
</ HTML>

2. Save your document as Calculator.html.

3. With a Web browser, open this HTML document. It should look
like Figure 9-10.

4. Play around with the input controls. Notice what each one does.

Some More Background on CGI 285

Calculator Form - Netscape

File Edit “iew Go Communicator Help

J-a%i\af&ad@@iﬁi

Back Forward Reload Horme Search Metscape Prink Security Shop St
5wl Bookmaks & Goloiile:///ClAwIND D%/ /Desktop/Caloulslor. html =] @57 What's Related
M &InstantMessage WebMail Radio People “rellow Pages Download Calendar D" Channe
A Web calculator

[12.5 [+ =[-2

Base MNotation:

® Decimal

O Hex

™ Perform error checking

Calculate Result
Reset Form |

T A IR

[== |Document: Done

Figure 9-10

Notice several things about this form you just created:

= Each input element has a “name” attribute. This is very important,
as it will be used by the CGI program.

= You’ll get an error if you press “Calculate Result”—this is because
all we have made is our form interface, but we have not written the
back-end to do any calculations.

= The Reset button sets everything back to the default value the page
had when it was loaded.

= You didn’t need any server programming to create an HTML
interface like this one.

Creating a form is like creating a VI's front panel—it’s the interface, not
the code. The “block diagram” of this HTML form will be a calculator.vi,
which we will create later on in this chapter.

Table 9-4 lists some of the form elements you can create in HTML.

286

Table 9-4

Chapter 9 Using CGI with LabVIEW

Form Element

HTML Sample

Notes

box" NAME=name
[checked]>

Button <I NPUT TYPE="button" A button. The value string is what
NAME=nanme VALUE=val ue> | shows up as the button’s label.
Text-box <I NPUT TYPE="text" A single-line text entry box.
(single-line) NANMVE=nane> Optional attributes for text inputs
are:
si ze="display_width”
max| engt h=" string_length”
Password <I NPUT TYPE="pass- Just like the text input, but char-
wor d” NAME=nane> acters are hidden as bullets or
asterisks when the user types.
Checkbox <I NPUT TYPE="check- A Boolean checkbox. " checked"

is a standalone attribute that
specifies the checkbox be checked
by default.

Radio buttons

<I NPUT TYPE="r adi 0"
NAVE="r 1" > Red

<I NPUT TYPE="r adi 0"
NAVE="r 1"> Yel | ow
<I NPUT TYPE="radi o
NAVE="r 1" checked>
G een

Radio button set. A group of
radio buttons that have mutually
exclusive checked options must
all have the same NAME attribute.
The checked attribute also
specifies which radio button is
selected by default.

<I NPUT TYPE="hi dden"

NAME=nane
VALUE=val ue>

Hidden A hidden input does not show up
NAME=nane on the Web browser. It is used to
VALUE=val ue> pass information to a CGI program
as part of the form, and the value
cannot be modified by the user.
Submit <I NPUT TYPE="submit" This shows up as a button on the
NAME=nare Web browser, but it has the effect
VALUE=val ue> of submitting the form to the URL
specified in the ACTI ON attribute
of the <FORM> tag.
Reset <I NPUT TYPE="reset" This also shows up as a button.

Clicking it has the effect of reset-
ting all the form elements back to
the default values in the page.

Some More Background on CGlI 287

Besides the <INPUT> tags, there are also tags like <TEXTAREA> for mul-
tiline textboxes, and <SELECT> for drop-down combo boxes. The details of
these form tags are fairly intricate and have many nuances, which precludes
me from including a detailed reference for them here. Instead, | highly rec-
ommend a good reference such as HTML: The Definitive Guide (O’Reilly,
1999) if you want to effectively design and debug your own HTML forms.

Imagemaps

One of the more useful form inputs in CGI-LabVIEW applications is to use a
clickable image. The image could be a snapshot of a VI’s front panel, or it
could be some other graphical interface. In any case, you can define an
image to be clickable and send information to a CGI application in two ways:

1. An image input: <INPUT TYPE=image>. With the image type of
<input> form element, you create a custom button, one that is a
“clickable” image. It's a special button made out of your specified
image that, when clicked by the user, tells the browser to submit
the form to the server, and includes the x,y coordinates of the
mouse pointer in the form’s parameter list. Image buttons require
a “src” attribute with the URL of the image file.

2. Define an image as an imagemap, and define a hyperlink for
“hotspots™ on different pieces of the images. An imagemap is cre-
ated by defining arbitrary pieces of an image that are clickable, and
associating a URL with clicking each piece. For example, you
could create an imagemap of a world map, and define each
hotspot to be a different country, allowing a user to click on a coun-
try and send the data back to the server.

The first method, using an image input, can be useful if you need (x,y)
coordinate information about where a user clicked. The (x,y) coordinates are
the number of pixels relative to the top-left corner of the image. When a user
clicks on the image, the (X,y) coordinates are passed to the CGI application as
parameters. This is the only information from the image that can be sent back
to the server. It’s then up to the server to interpret or decide what to do with
the (x,y) coordinates.

The second method is probably more useful in most LabVIEW applica-
tions. With an imagemap, you can “chop up” an image like a puzzle and
define what parameters get sent for by clicking on different pieces of an

288 Chapter 9 Using CGI with LabVIEW

image. There are two ways to create imagemaps, known as server-side and
client-side image maps. The former, enabled by the i smap attribute for the
<i ng> tag, requires access to a server and related imagemap processing
applications. The latter is created with the usenap attribute for the <i ng>
tag, along with corresponding <map> and <ar ea> tags. We will only show
an example of a client-side imagemap, since in general, they are easier to cre-
ate and work with, and generally are more widely used than server-side
image maps.
The following HTML code is an example of a client-side imagemap:

<l-- This HTM. code defines the areas for the i magemap and the associ at ed
links. Note how each link points to the sane Cd M, but provides different
paraneters in the query string -->
<MAP Nare="but t ons" >
<AREA Shape="Rect" coords = "18, 26, 35, 47"

HREF="/cgi - bi n/ I map_ct1/ctl cgi.vi ?control _nane=Fr equency&val ue=up" >
<AREA Shape="Rect" coords = "18, 48, 35, 71"

HREF="/cgi - bi n/ I map_ct!/ctl cgi.vi ?control _nane=Fr equency&val ue=down" >
<AREA Shape="Rect" coords = "18, 90, 35, 111"

HREF="/cgi - bi n/ 1 map_ct!/ctl cgi.vi ?control _nane=Noi se&val ue=up" >
<AREA Shape="Rect" coords = "18, 112, 35, 133"

HREF="/cqgi -bi n/ 1 map_ct|/ctlcgi.vi ?control _nane=Noi se&val ue=down" >
<AREA Shape="Rect" coords = "12, 154, 111, 180"

HREF="/cgi - bi n/ I map_ct!/ctl cgi.vi ?control _nane=Pause&val ue=swi t ch" >
<AREA Shape="Rect" coords = "12,189, 111, 215"

HREF="/cgi - bi n/ 1 map_ct|/ctlcgi.vi ?control _nane=St op&val ue=swi t ch">
</ NAP>

<l-- This is the image itself. Note the "usemap" attribute that refers to
the map defined earlier-->

<img src=".nonitor?panel .vi" wi dth=460 hei ght =234 border=0 al t="Data Acqui -
sition" usemap="#buttons">

Figure 9-11 shows a screenshot of how the imagemap was created in Mac-
romedia Dreamweaver’s Web editor.

Creating client-side imagemaps is one the places where you really
vmw need a professional HTML editor like Macromedia Dreamweaver or
9 Microsoft FrontPage. These editors allow you to “draw” the shapes
on your images and will create the <MAP> tags automatically for
y—————— you. Most freeware editors (e.g., FrontPage Express) don’t have
support for graphically creating imagemaps.

LabVIEW and CGI Applications 289

Map Mame: Ibuttons

L3

|

9] - data —
= Frequency 100~

[wj[100.00 | ™

258

A Noise 00
vi4000 |
= 5.0
o] -7.5-

Losw | %

00 1000 2000 3000 4000 5000

Link: Ia"cgi-bin.-"lmap_c:tl.-"c:tlc:gi.vi?control_name=F'ausej] Qlt:l
Target: I j QK I Cancel | Help
| Fiectangle |'91,189 v
Figure 9-11

Using an HTML Editor for defining an imagemap

The best way to study imagemaps is to do the activity examples in the
next section, where you will see how the preceding HTML code is created
and used in conjunction with a VI to provide control over the Web.

— LabVIEW and CGI Applications

';'"-‘"'" Okay, you’ve just read more facts about CGI than the average person
oolkit .

would want for breakfast. But the best way to understand CGl is by
example. This section guides you step by step through some simple
examples you can build on for your applications. All of the code is on the
CD, of course. We will detail two HTML form examples and one imagemap
example that use CGI Vs as the back-end.

290 Chapter 9 Using CGI with LabVIEW

Processing Forms in LabVIEW

Activity 9.6 The Simple Calculator CG

We’ll start with an example of a CGI application, written in
LabVIEW, that can simulate a simple calculator. This CGI
application will let the user input data through a Web
browser, will perform the calculations in LabVIEW, and send
the results back to the Web browser. It is similar to the HTML form you cre-
ated in Activity 9.5, but with a simpler interface.

Start by just running the example, and then we’ll go through it step by
step to see how it works. To run this example, do the following:

1. Copy the files calculator.vi and calculator.llb from the CD to the CGI
directory of your Internet Toolkit's HTTP server (this is usually the
directory [path to LabVIEW]\LabVI EWi nternet\ hone\cgi -
bi n\).

2. From LabVIEW, run the Internet Toolkit HTTP server (you must
have the Internet Toolkit installed) by selecting the menu option
Project>>Internet Toolkit>>Start HTTP Server. Make sure the
built-in LabVIEW Web server or any other Web servers are not
running at this time.

3. With your Web browser, open the URL that points to the VI calcu-
lator.vi. If you are opening the browser on your local machine, this
should look like http://localhost/cgi-bin/calculator.vi. Make sure
you are opening this via an http:// URL, not a File:///URL.

4. You should see the simple calculator as shown in Figure 9-12. Try out
some operations and press the “=" button to see the results displayed.

Notice that the end user of this application never “sees” LabVIEW. In fact,
there would be no clue at all what kind of program is behind this Web-based
calculator, except that if you look closely, you’ll see that the URL points to a
VI instead of a static HTML file.

By using LabVIEW and the CGI capabilities of the Internet Toolkit, you
effectively can put LabVIEW VIs to work and allow remote access without
the user needing anything special beyond the Web browser. This example,

LabVIEW and CGI Applications 201

Calculator - Netscape

Edit Wiew Go Communicator Help

i 3 4 . oE s & I

Back Fopward Reload Home Search Metzcape Frint Security
Instant Message Internet Ci Lookup Ci MewtCool
wtv Bookmarks A Location:lhttp:.-".-"‘l 92.168.1.3/coi-bin/caloulator. vi j @v\w’hat's Related

A simple calculator

j1z.5 [+ = -2 = |15.700000
Resetl

| =B= |Document: Dane Sl = 2

Figure 9-12
The Calculator.vi CGI application

although trivial, shows how a user can remotely run computations on Lab-
VIEW without needing to install LabVIEW or even know how to use it.

Dissecting the Simple Calculator CGI Example

Now let’s take a look “behind the scenes” to see how this CGI works.

Calculator CGI: Top-Level Calculator VI

Open the VI calculator.vi in LabVIEW and study the block diagram, shown
in Figure 9-13.

Be sure that you copied this example VI to the cgi-bin directory of the

ITK Web server, and you do not have another copy of this same VI

open (e.g., from the CD). Otherwise the CGI call from the browser

will fail because the LabVIEW will try to run the VI in memory instead
oy————— of the VI in the correct server location.

202 Chapter 9 Using CGI with LabVIEW

W[True B
CGl Read Heauesl.vi LG w/rike Fieply. i LGl Release. vi
GGl | [-1-1} [-1-1}
= /cgi-bin/calculator. vi s
i P'eform Arithmetic. vi]
J Sl | '
Calculator Form. v ET ML Dosumenio
CGl Parge URL-Encoded Param String. vi
BGCOLOR="#FFFFFF"
ol
Figure 9-13

The calculator VI block diagram. The front panel has nothing on it.

The functions CGI Read Request, CGIl Write Reply, and CGI Release VI
are VIs available on the CGI palette of the Internet Toolkit. These VIs are
always used as part of a CGI application. The functions Perform Arith-
metic.vi and Calculator Form.vi are specific to this calculator example (they
are in calculator.llb). (See Table 9-5.)

Table 9-5

timeout in secs (default) Waits timeout seconds for a request before
timing out. If a valid request arrives, valid
request? is set to TRUE and the calling VI
can use the content and the associated
environment variables (env) to build an
appropriate reply that must be returned
with a call to the CGI Write Reply VI. The
cgi connection info is a cluster that identi-

fies a particular CGI session.

cgi connection info
header -
content

Writes a reply to the HTTP connections
specified by cgi connection info. The con-
tent string is the data (usually HTML) to
be sent back to the browser; the header
info is optional.

cai connection info == cel Informs the server that the CGI has fin-

CE1 Reloase.vi ished processing requests and can be
unloaded from memory. Call this VI when
the CGI Read Request VI returns FALSE
in its valid request? parameter.

LabVIEW and CGI Applications 203

Since the VIs CGI Read Request, CGI Write Reply, and CGI Release
VI are always required for a CGI application in LabVIEW, you can
save time by using a CGlI template. When building a new VI, use
the CGI Template.vit from the CGlI palette (see Figure 9-14).

B Internet Toolkit B3
CGl Vis

2w 2
T"P M;-;.l Telnet

UHL PDP
—D=0|:ﬁ| Vis

CGl Template ¥ls

L
[0-]

752 .
= uniy

[o] [E6T " o] [F omie]

|
Y| | LT €6l . —HICGI Template ¥is
CGI Template. vit

Cliert | [Client | | Client

=L =2 AL a=N
o] L
(81 | [(31 || 53 ccl | [c6l |[col

2ob ||| @

Figure 9-14
CGlI Template.vit

When the browser requests the URL that points to calculator.vi, the Inter-
net Toolkit’s HTTP server figures out that the client is requesting to run a
CGl executable instead of static document. So, the server automatically runs
the calculator VI. Once the VI runs, CGl Read Request loops repeatedly
until it receives a valid and complete HTTP request. A valid HTTP request
means that someone pressed the “=" button on the HTML form, sending the
HTTP request through the browser. Once the valid request is received,
the cgi-connection info cluster is passed out, as well as the content string. The
content string contains all the parameters passed through the HTML form;
that is, the numeric fields the user filled out and the value of the drop-down
combo box (+, -, * or /). This information is processed by our subVI Perform
Arithmetic, and then the new HTML data is created by Calculator Form.
This HTML string is formatted by Build HTML Document and finally is

294

Chapter 9 Using CGI with LabVIEW

passed back to the browser with CGI Write Reply. Once the response is com-
plete, we free the CGI resources by calling CGI Release.

Does this seem complicated? Hang in there, you’re going to see how it
works! As | mentioned before, CGI is more complex than the Web technolo-
gies we have seen so far because it requires understanding the interaction of
HTML forms, HTTP, Web servers, and the programming language they are
written in. However, | find that working through and understanding an
example is the best way to start writing my own CGls. So let’s press on.

Returning back to the output of CGl Read Request: the content string
is passed to a function CGI Parse URL-Encoded Param String.vi, which is
available on the CGI palette. It converts the URL-encoded parameter string
that is returned from the browser into a keyed array (see Table 9-6).

Table 9-6

Lencodod i URL™ Returns the contents of a URL-encoded
url-encoded param string [0] params . . .

parameter list string in a keyed array. You
can use this VI to parse the contents of an
HTML form (POST) request.

CGl Parse URL-Encoded Param String. vi

Let’s now get a picture of what is on the client side: the HTML source. If
you select View Source on your Web browser from the calculator form, you
should see something like the following:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 3.2 Draft//EN'>

<HTM_>

<l-- Constructed with the G Wb Server -->
<HEAD>

<TI TLE>Cal cul at or </ TI TLE>

</ HEAD>

<BODY BGCOLOR="#FFFFFF" >

<H1 ALI GN=CENTER>A si npl e cal cul at or </ H1>

<FORM METHOD="PCST" ACTI ON="/cgi - bi n/cal cul ator.vi">
<INPUT TYPE="text" SIZE="8" VALUE="12.5" NAME="T1">
<SELECT NAME="operation">

<OPTI ON VALUE="+" SELECTED>+

<OPTI ON VALUE="-">-

<OPTI ON VALUE="*" >*

<OPTI ON VALUE="/" >/

</ SELECT>
<I NPUT TYPE="text" SIZE="8" VALUE="3.2" NAMVE="T2">
<I NPUT TYPE="subnmit" VALUE=" = ">

15. 700000</ B>

LabVIEW and CGI Applications 205

<INPUT TYPE="reset" >
</ FORM>
</ BODY>
</ HTML>

Notice the <FORM> tag: It specifies that we use the POST method to pass
the form parameters, and it specifies the CGI application to call when the
form is submitted: “/ cgi - bi n/ cal cul at or. vi ”. The action value must
be a path relative to the Web root or relative to the HTML document.

Our form inputs consist of two textboxes, “T1” and “T2”, a combo-box
“oper at i on” with four valid selections (+, -, *, or /), aSubmit button,
and a Reset button. When we press the Submit button, the URL-encoded
parameter string sent to the CGI application will look something like:

T1=12. 5&oper at i on=92B&T2=3. 2

The %2B is the URL encoding for the “+” character. After we convert this
to a keyed array, the key-value pairs will be:

Table 9-7
Key Value
T1 125
T2 3.2
Operation | +

Remember we discussed URL-encoded strings and keyed arrays
earlier in the chapter; refer back to the definitions if you’re confused
about what these are.

Calculator CGI: Perform Arithmetic VI

Let’s go back to LabVIEW. This keyed array of the form parameters is used
by the subVI Perform Arithmetic.vi. Open this VI to see its block diagram
(the VI is in calculator.llb) (see Figure 9-15).

The params in is the keyed array of the form parameters. The VI uses the
Keyed Array Index function to get the values for “operation”, “T1”, and “T2”. It

296

Chapter 9 Using CGI with LabVIEW

F.eved Aray Indes, vi "
s SR Dol b
operation o

Index
Keved Array Indes. vi

7|1
Index o Feyed Aoy A v
Keyed Aay Inden.vi FEE) frosul] |
eyed Array [ndex. vi FE Add
[0-m] |

T2 Index

Figure 9-15

The Perform Arithmetic VI

does the string-to-number conversion, gets the appropriate arithmetic result,
and adds the result as a new element (indexed by “result” key) using the Keyed
Array Add. Remember, the keyed array VIs are part of the Internet Toolkit and
are located on the Internet Toolkit>>CGI>>Keyed Array VIs palette. The two
functions we just used are described in Table 9-8.

Table 9-8
anay in o anay ot Keyed Array Add adds a new element
ey o o f . rey value
et~ LB e identified by key and containing value to
case matching [zensitive] . .

Keyed Array Add.vi array in. If an element with the same key
already exists in array in, the value is
returned in prev value, and replaced
returns TRUE.

ana_r(in (0] durlicate array Keyed Array Index returns the value of
default valog — N ey the element identified by key.
caze matching [sensitive]
Keyed Array Index.vi

Calculator CGI: Calculator Form VI

Now that we have done the calculation that is the heart of this CGI application,
we need to send everything back to the browser. This step involves first dynam-
ically creating an HTML string that sends the same calculator form plus the
result. Open the Calculator Form VI’s block diagram (see Figure 9-16).

This VI makes use of the HTML construction VIs (in Internet Tool-
kit>>CGI>>HTML VIs). If you study the block diagram, you’ll see that we
index our keyed array to get the values for the parameters and the result.
The HTML Vs build the page and the form we saw in the browser.

LabVIEW and CGI Applications 207

Foaed Array Inden v [Keyed Aray Indes vi Feped Aray Indes. vi Keved Array Indes vi
o] [B-] [2-m]
Inde: Index

Index

T2 | [HTML Fom Test ieakvi [HTML Fom Button

0
b}

11| [ATML Farm T ext] loperation;

[HTML Fom.v] [HTML out

jaction - UAL of cqi

Figure 9-16
Calculator Form VI builds the HTML to be sent back to the browser

Wait a minute . . . why are we building the same HTML form inside the VI1?
Isn’t this VI called by our HTML form? The answer is yes, we are creating a
self-referential CGI application on purpose, which is quite common with
CGI applications. Think about it a minute: If we wanted to, we could have
made our application respond with a simple HTML document that gave the
calculation result and just said “Thank You.” But then the user would have
to press “Back™ on his or her browser to get to the calculator form again. It’s
much more elegant to display the same form again, with the results and the
input values the user just submitted.

So, the Calculator Form VI outputs a string, which is simply the HTML
source that is fed back to the browser by the function CGI Write Reply.

You might be wondering how the “first” HTML form gets created, if the
form is generated only after calling the CGI. There are two ways to run the
CGil: pressing the Submit button on the form, or requesting the CGI’s URL
directly from the browser. When you type in the URL that pointed to calcula-
tor.vi, you actually call the CGI application, but do not pass it any parame-
ters. Although the CGI application expects the form parameters (e.g., “T1”,
“T2”, “operation”), it can still execute successfully without them, simply
returning the form and leaving blank those sections it did not have informa-
tion for (e.g., the results). This method is common for CGI applications, since
it avoids the need for a “starter” HTML file.

Calculator CGI: Summary
To summarize the steps in our example:

298

Chapter 9 Using CGI with LabVIEW

1. The HTTP server is running when a Web client requests the calcu-
lator.vi CGI.

2. Inside calculator.vi, we use the CGIl Read Request to read the
browser’s environment variables and the form parameters after
the user presses the equal sign.

3. With some subVIs, we process the form parameters and calculate
the arithmetic result with Perform Arithmetic.

4. The HTML containing the form and the result is built with Calcu-
lator Form. This HTML “on-the-fly” document is passed back to
the browser with CGI Write Reply.

5. The browser shows the form with the latest result to the right of
the equal sign.

Hopefully, this dissection of an example has given you a good under-
standing of how a CGI application in LabVIEW works.

Challenge Activity 9.7

Modify the previous calculator CGI so that it allows the user to choose deci-
mal or hex base for the numbers.

Now let’s look at another example: a guestbook form that allows you to type
text into the browser and see the results of a dynamically created HTML page.

Activity 9.8 Guestbook Form

The following “guest book™ example is provided on the CD.
To run this example, do the following:

1. From LabVIEW, run the Internet Toolkit HTTP server
(you must have the Internet Toolkit installed).

2. Copy the file guest book. ht M (located on the CD directory) to
the root directory of your HTTP server (this is usually the directory
[path to LabVI EW\ LabVI EWi nt er net\ hore\).

LabVIEW and CGI Applications 209

3. Copy the two files guestbook.vi and guestbook.11b from the CD (in the
Ch9 directory) to the CGI directory of your HTTP server (this should
normally be the directory [path t o LabVI EW\ LabVI EWi nt er -
net\ cgi-bin\).

4. With a Web browser such as Netscape Navigator, open this HTML
page guestbook.html through HTTP (make sure you are not open-
ing it as a file:/// URL). The URL will should look like http://
[your ip address]/guestbook. htn .

5. You should see the page shown in Figure 9-17.

- Welcome to my LabVIEW serverl - Netscape

File Edit “iew Go Communicator Help

w@-@%«\af&adﬁgﬁ

Biach Fopward Reload Home Search Metzcape Frint Security
Instant Message Internet Ci Lookup Ci MewtCool
wtv Bookmarks A Location:lhttp:.-".-"‘l 92.168.1.3/questbook. htrnl j @vw’hat's Related

Welcome to my LabVIEW server!

Please fill out my guestbook by providing yvour first and last name below.

First Mame: |
Last Mame: |

Submit | Reset |

“When you press Submit, you will call the guesthoolewi in LabVIEW which will
add your name to the guest boole.

’E == | |Document: Done

Figure 9-17

6. This HTML document, called guestbook.html, contains a simple form
that a user can fill out. Fill out the fields and press the Submit button.

300

Chapter 9 Using CGI with LabVIEW

7. If everything was set up properly, you should see a new HTML
page that says “Thank you for visiting,” along with your name
and a history of people who have run the CGI (you can go back and
resubmit new names to see how the history works).

When you filled out the fields “First Name” and “Last Name” and pressed
the Submit button, the data in those fields is passed to a CGI application. The
CGI application in this case happens to be the LabVIEW VI called guest-
book.vi, which you copied from the CD (this VI, in turn, calls some subVIs
from guestbook.llb). The guestbook.vi takes the data from the HTML form,
adds it to a log file, and returns new HTML data with a welcome message, the
name just entered, and the contents of the guestbook file. (See Figure 9-18.)

Guest Book from "Guest Book CGI" - Netscape

File Edit “iew Go Communicator Help

< » 3 A o 5 & @
Back Fopward Reload Home Search Metzcape Frint Security Stop

Instant Message Internet Ci Lookup Ci MewtCool

wtv Bookmarks A Location:lhttp:.-".-"‘l 92.168.1.3/coi-bin/guestbook. vi j @vw’hat's Related

Thank you for visiting, Jeffrey Travis !

Other guests who have visited this site:

[Thu, May 27, 1999 - 6:03 PIM]
Travis, Jeff

[Thu, May 27, 1999 - 6:03 PIM]
Phace, Harry

[Thu, May 27, 1999 - 6:15 PM]
Kenohi, Obi-Wan

[Thu, May 27, 1999 - 6:16 PM]
Maul, Darth

[Thu, May 27, 1999 - 6:27 PM]
Travis, Jeffrey

’E == | |Document: Done

Figure 9-18

LabVIEW and CGI Applications 301

Notice that the resulting HTML page was generated on the fly, and was
not a static document on the server somewhere. If you look closely at
Figure 9-18, you’ll notice also that the URL in the address bar points to the
guestbook VI, and not to an HTML document. This VI is the CGI application
that just generated the document. The VI does all the “work” of saving the
name, adding it to the log file, reading all the entries in the log file, and
building a new HTML document. It also does some field validation (try this
example, but leave one of the fields blank to see what happens).

Examine the HTML source code and the guestbook VIs to see how this
example was made. Notice in particular how the form validation was done.
The block diagram of guestbook.vi is shown in Figure 9-19.

M True B
CGI Azad Aequesty ICGI Write Reply. vi CGI Relzase. v
€6l cGl col
Y — =Y @
Guest
Farar
SR st Bl from 2 ATHL Dosumento
Keved Amay Indsw vi "E"
o] !
Irdes
Tl True B
™ True Pf
quest_fie-| @ Fead [“%|add uest
Index Mame Name) List
=
e
‘add)~
—
Figure 9-19

The top-level CGI guestbook.vi

= Using Imagemaps to Control VIs

Now let’s look at an example of using graphical image controls on the Web.
By using imagemaps, you can display front panel images on the Web that
also can respond to user input. This is one of the ways you can control VIs
over the Web.

302 Chapter 9 Using CGI with LabVIEW

Activity 9.9 Controlling a VI Over the Web with CGI and
Imagemaps

P>

This example is available also from the National Instrument’s
Web site. Do the following:

1. Inside the cgi - bi n directory of the ITK Web server,
create a new directory called “i map_ct1”.

2. From the CD, copy the contents of the “CGI Imagemap” directory
tothecgi-bin/imap_ctl/ directory.

3. Make sure the ITK Web server is running.

4. From your Web browser (preferably use Netscape for this exam-
ple), open the URL.:

http://127.0.0. 1/ cgi-bin/imp_ctl/index. htm

and follow the link.
5. You will see the image of a VI you can click on, as shown in Figure 9-20.

If you go to LabVIEW, you will see that the VI panel.vi is launched and
running. This is the VI you are controlling (see Figure 9-21).

On the Web browser, click on the up and down arrows for “Frequency”
and “Noise”; click on the Paused and Stop buttons. Notice also you can
input data via form elements on the right.

Analyzing the CGI Imagemap Example

Now let’s take a closer look at how the imagemap example works. Note that
this example uses three Vls:

= Panel.vi is the VI we are controlling.
= run_panl.vi is a CGI VI that launches panel.vi and runs it.

= ctlcgi.vi is the CGI VI that handles all the user clicks on the
imagemap and sends an updated image back to the browser.

LabVIEW and CGI Applications 303

nternet Toolkit Demo - Metscape
File Edt “iew Go Communicator Help
w2 e A 4 a = & @
il Back Forseard Feload Home Search Metscape Print Security Stop
v ‘t " Bookmarks \f‘ Locatior Ihttp'.-’ﬂ 27 0.0.1 feqgi-bindimap_cHpanlimg. htrm ﬂ @vw’hat's Related
Webi ail Cantact People “relow Pages Download Find Sites L‘i Channels

Interactive VI Control with Internet Developers Toolkit

The image below is a amondtor of the front panel of a VI that was launched on the server when you clicked on the link to
bring you to this page. (You will only see an animation if you are using a Metscape browser) The VI below should now be
running on the server machine, and a clickable image map with CGI links has been defined to allow a client to control the
W1 by clicking on the button pertions of the image or submitting new values for the front-panel numeric controls.

Frequency : Select the front-panel

!I 100.00 control to adjust
IFrequency 'I
Hoise

!I 40.00 . ' ’ Enter the new value:
2 ' I—
Update Panel

[[[! 1
7000 8000 300.0 1000.0 1063.7)

Try pressing the up and down arrows for frequency and noise and seeingz what happens. The CGls are set to adjust the
frequency and noise front-panel controls up and dewn by steps of 20. The Pause and Stop buttons also have hot spots that

ate linked to CGL Vs,

= == I [96K iead [at 3. 9K zec)

Figure 9-20
Controllable VI over the Web using CGI and imagemaps

Look at the HTML source of panl i ng. ht m the HTML page that we interacted
with. The HTML is shown as follows, with the important portions in bold.

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 3.2 Final//EN'>

<HTM_>
<HEAD>
<TI TLE>I nternet Tool kit Deno</TI TLE>
</ HEAD>
<BODY>
<l-- The lines bel ow define an i nage map for the panel of

panel .vi, creating clickable hot spots around the button
controls for freq/noise up/down, Pause, and Stop.

304 Chapter 9 Using CGI with LabVIEW

File Edit Dperate Project ‘windows Help

"» [Acqr

Il &

Al Frequency
v/100.00

Noise

ij 40.00

7000 8000 9000 1000010687

Figure 9-21

By associating the HREF values that it does with the hot spots,

the map assures that the ctlcgi.vi callback VI will be invoked

with the appropriate argunents when the user clicks on the

various areas. -->

<MAP Nane="buttons">

<AREA Shape="Rect" coords = "18, 26, 35, 47"
HREF="/cgi -bin/ I map_ctl/ctlcgi.vi ?control _name=Fre-

guency&val ue=up" >

<AREA Shape="Rect" coords = "18, 48, 35, 71"
HREF="/cgi -bin/1map_ctl/ctlcgi.vi ?control _name=Fre-

guency&val ue=down" >

<AREA Shape="Rect" coords = "18, 90, 35, 111"
HREF="/cgi-bin/lmap_ctl/ctl -

cgi . vi ?cont rol _nanme=Noi se&val ue=up" >

<AREA Shape="Rect" coords = "18, 112, 35, 133"
HREF="/cgi-bin/lmap_ctl/ctl -

cgi . vi ?control _nanme=Noi se&val ue=down" >

<AREA Shape="Rect" coords = "12, 154,111, 180"
HREF="/cgi-bin/lmap_ctl/ctl -

cgi . vi ?control _nanme=Pause&val ue=swi t ch" >

<AREA Shape="Rect" coords = "12,189, 111, 215"
HREF="/cgi-bin/lmap_ctl/ctl -

cgi . vi ?control _nanme=St op&val ue=swi tch">

</ NAP>

<h2>

Interactive VI Control with Internet Devel opers Tool kit

</ h2>

<p>

LabVIEW and CGI Applications 305

The i nage below is a . nonitor of the front panel of a Vi
that was | aunched on the server when you clicked on the link to
bring you to this page. (You will only see an animation if you
are using a Netscape browser.) The VI bel ow should now be run-
ning on the server machine, and a clickable inmage map with CG

i nks has been defined to allow a client to control the VI by

clicking on the button portions of the inmage or submitting new
val ues for the front-panel nuneric controls.

<p>

<tabl e cel |l spaci ng=30 cel | paddi ng=10>

<tr>

<td bgcol or="gray">

<p>

<center><ing src=".nonitor?panel.vi" w dt h=460
hei ght =234 border=0 alt="Data Acqui sition"
usemap="#butt ons" ></ cent er >

</td>

<td wi dt h=150 bgcol or="yel | ow'>

<form ACTI ON="/cgi -bin/ I map_ctl/ctlcgi.vi"
METHOD="GET" ENCTYPE="appl i cati on/ x- www f or m
url encoded" >

<p>

Sel ect the front-panel control to adjust:

<sel ect nane="control _nanme">

<option val ue="Frequency" >Frequency

<option val ue="Noi se">Noi se

</sel ect>

<p>

Enter the new val ue:

<i nput nanme="val ue" type="text" size=6>

<p>

<I NPUT TYPE="SUBM T" NAME="Subm t" VALUE="Updat e

Panel " ></ TD></ TR>

</ forne

</td>

</tr>
</ tabl e>

<p>

Try pressing the up and down arrows for frequency and noi se and
seei ng what happens. The CG@s are set to adjust the frequency
and noi se front-panel controls up and down by steps of 20. The
Pause and Stop buttons al so have hot spots that are linked to
C3d Vs

<p>

306 Chapter 9 Using CGI with LabVIEW

The formin the yellowtable cell also invokes the same CA when
you press the "Update Panel" button, allow ng you to interac-
tively set the values of the front-panel frequency and noi se
controls.

</ p>

<p>

Exam ne the HTM. code for this page (panling.htm and the Cd
Vls that it uses to understand how it works.

</ p>

</ BODY>
</ HTM_>

Notice several things about the HTML code:

It combines the use of the Web server’s capability of creating front
panel images on the fly with an imagemap. That is, in the <I M>
tag, the SRC attribute is “. noni t or ?panel . vi ”, which is our
VI's front panel, and it also references usemap=#but t ons, which
tells it to treat the image as an imagemap.

The map is defined in the HTML within the <MAP> ... </ MAP>
tags.

Notice that each hotspot on the map definition (in the <AREA>
tag) points to our CGI VI, “ctlcgi.vi” but has a different query
string; for example:

<AREA Shape="Rect" coords = "12, 154,111, 180" HREF="/cgi - bi n/
Imap_ctl/ctlcgi.vi?control _nanme=Pause&val ue=swi t ch">

is a rectangular shape whose coordinates enclose the Pause button
on the image.

From the URLs in each of the <AREA> tags, it’s clear that we are
always sending two parameters in the query string: control_name
and value. The first parameter is the name of the *“control” the user
clicks on; the second parameter is the action or value of that control.

In addition to the imagemap, there is a form with some inputs that
also will send data to the CGI application if the user clicks on the
Submit button.

Incidentally, clicking on an imagemap has the effect of submitting the CGI
parameters, so there is no need to click on a separate Submit button.

LabVIEW and CGI Applications 307

Now let’s look at the VIs that handle the click events on the imagemap.
First, if you examine panel.vi’'s block diagram, you’ll see it doesn’t even
“know” about the Web interface, nor does it have any ITK VIs in the block
diagram; this VI can run as a standalone. That’s because the other two VIs
control panel.vi through the user of VI Server functions.

Second, the run_panl.vi simply launches panel.vi when it is called
through a CGI (this happened when you clicked on the link “click here” to
start the program).

Third, the ctlcgi.vi is what does all the real work. Study its block diagram
shown in Figure 9-22.

[True P
CGI Read Request.vi [CGI 'w/ite: Reply. v ICGI Release. vi
cGl | = = CGI ool
2 y Ianatmn' Jegi-binfimap_ctl/panlimg html'j o1 S
. Retum user to same page with embedded panel image.
2 ey
i ["Pause”, "Stop"” 2
Which controlis
being operated? | T "switch” t
= [o-w] Read current state of boolean control, invert it, and
Index wiite that value back ta the control
Keved Aray [ndex.vi w " Vituallrstrument 3 Unflatten From Stin
Ooan i Fioh Get Control Valus (=]
pen Yl Reference) o
Control Hame F
r i F|
E Type Descriptor | 2 °[>
0=
Get a reference to the
panel il so vwe can " Clase ¥l Feference|
read iand vtwl‘e Itf B Wittuallrstiument 5 s
= Set Control Valug .
Control Hame
=]
i Type Descriptor
- Flattened Data
Flatten To Sting
—
Figure 9-22

ctlcgi.vi handles the user’s clicks on the imagemap and passes the changes to the VI
“panel.vi” through a VI reference

Notice how the query parameters are parsed using CGIl Get Query
Parameters.vi. This function (part of the Internet Toolkit’'s CGI library)
returns the query string portion of the URL. We know from the HTML code
that the two query parameters are “control_name” and “value”. Since these
are passed as a keyed array, the ctlcgi.vi uses the Keyed Array Index to get
the values of these two parameters.

Also note how the VI opened a VI reference to panel.vi (see Chapter 4, The
VI Server, for information). It uses the VI Server methods “Get Control

308

Chapter 9 Using CGI with LabVIEW

Value” and “Set Control Value” from the VI class to set the values dynami-
cally on panel.vi. The updated values come from “control_name” and
“value”. Once the panel VI is updated, the whole HTML page is sent back to
the user again and the VI reference is closed. Since the HTML pages use a
“.monitor?” URL, it will get the latest animated image of panel.vi and reflect
the changes made by the user’s click.

Activity 9.10 Modify the Imagemap Example

In this activity, you will modify the example we just looked at. You will add
the capability for the user to change the plot color from the Web browser.
Start by doing the following:

1. Make a copy of the VI and HTML files from the previous example, and
rename them so they all have “2” after the name (e.g., panel2.vi,
index2.html, etc.). Be sure these files are still in the cgi - bi n/
I map_ctl/ directory.

2. Change panel2.vi so that it has a switch to modify the plot color, as
shown in Figure 9-23.

oata
10.0+

Frequency

7.5
v 10000 |]

215

Noise

v//40.00 el
5.0-

0.0 [[[[I
0.0 100.0 200.0 300.0 400.0 500.0

Plot color

white green

Figure 9-23

(Hint: on the block diagram, use a chart Attribute node to switch
plot colors.)

LabVIEW and CGI Applications 309

3. Modify index2.html so that the link points to /cgi-bin/
i map_ctl/runpanl 2. vi.

4. Modify panlimg2.html so that every reference to “cgi ctl . vi ” is
updated to “cgi ctl 2. vi ”. Also update the tag so the
source points to . noni t or ?panel 2. vi .

5. Modify run_panl2.vi in the block diagram so that it references the
new files.

6. Modify cgictl2.vi so that it returns the new HTML page,
panlimg2.html.

7. Open http://localhost/cgi-bin/imap_ctl/index2.html in your
Web browser and verify that everything works as in the old demo.
The “plot color” hotspot won’t be active yet.

8. Now comes the only tricky part. You need to add an entry to the
imagemap in the HTML file “panlimg2.html” so that users can
click on the “plot color” switch. The best way to do this is with a
professional HTML editor like Dreamweaver. First, you should
create a PNG or JPEG image of “panlimg2.html!” (with the Print...
menu and using the HTML option). Then, with your HTML editor,
open this image and define a hotspot for the “plot color” switch.
You can then take the generated <AREA> tag with the appropriate
coordinates and paste it into the “panlimg2.html” file.

Alternatively, you can try guessing the size and position of your
switch (in pixels) and typing in the <AREA> tag. Either way, your
last entry in the map should look something like this (the exact
coordinates will vary, but you should type the HREF source
exactly as shown):

<AREA shape="rect" coords="14, 244, 53, 263" HREF="/cgi - bi n/
I map_ctl/ctlcgi 2. vi?control _name=Pl ot %20col or &al ue=swi t ch" >

9. Now that you modified the map interface, you must be able to
handle the “plot color” value in the “control_name” parameter.
Because of the design architecture in cgictl.vi, this is surprisingly
easy. Simply add the entry “Plot color” in the Case structure, as
shown in Figure 9-24. That’s it!!

This works because the string “Plot color” is the same as the name of
the control in panel2.vi and as the parameter value for “control_name”
on the HTML code.

310 Chapter 9 Using CGI with LabVIEW

(-1-]] cGl
A S
Which control s | —
being operated? § ALl T oA
i [0-m] Read curent state of boolean contral, irvert it, and
Indes| wirite that value back to the contral.
" B w Virtuallnstument
Get Control Value EZ 5
gl Control Mame = .. .,|>
anel. vi E Type Desciiplor |
o= |
Get areference to the
panel vivl sowe can I
read Ic'md w"l‘e \tT B o Virtuallnstrument &
aneeoniro/lailes: Set Contiol Y alue
Cortral Name
= v Type Descriptor
B ¢ Flattened Data

Figure 9-24

10. Run the program again by typing
http://1ocal host/cgi-bin/imp_ctl/index2. htm

in your browser. Now you should be able to click on the hotspot
and watch the plot color change (see Figure 9-25).

= More CGI Examples

The best place for more CGIl examples are the ones provided with the Inter-
net Toolkit themselves. You can find examples on using CGI with:

= HTML generation

= Client-side imagemaps
= Server-side imagemaps
= Forms

= Cookies

= Sample applications

LabVIEW and CGI Applications 311

ternet Toolkit CGl Demo -- Modified - Metscape

le Edt “iew Go Communicator Help
2 = A A4 = < & @ N
Back Forwerd, Feload Home Search Metscape Frint Security Stop e |

w‘ " Bookmarks \J‘ Location: Ihltp'.U\ncalhmsh"cgl-hlm‘lmap_ct\.-"panllng htrn j @‘ What's Related

WebM ail Contact People “relow Pages Daownload Find Sites Ci Channels

Interactive VI Control with Internet Developers Toolkit

The image below is a amonitor of the front panel of a VI that was launched on the server when you clicked on the link to
bring you to this page. (You will only see an animation if you are using a Metscape browser) The VI below should now be
running on the setver machine, and a clickable image map with CGI links has been defined to allow a client to control the
VI by clicking on the button portions of the image or submitting new values for the front-panel numeric controls.

Frequency

% 100.00 u.‘Mrnmw ﬂ‘ Select the front-panel

control to adjust:
Noise

' . [Feguency =]
wo | - L

2.0

E0- Enter the new value:

[Pawe | a5 —
JU'D_II 1 1 1 1 1
1389.3 1800.0 1600.0 17000 1800.0 1883.3
Update Panel | —

Plot color

i green

[&F [=B=| T [229K read [at 153K/ sec)

Figure 9-25

Just run the Internet Toolkit Web browser, open your browser to:
http://1 ocal host/exanpl es/i ndex. ht m

and explore!

312 Chapter 9 Using CGI with LabVIEW

FAQs

Where can | get more information about CGI specifications and
programming?

Start by looking at these links:
World Wide Web consortium home: http://www.w3.0rg

NCSAHTTPD (HTTP Server) homepage: http://
hoohoo.ncsa.uiuc.edu

A good reference and tutorial book on CGl is CGI Programming on the
World Wide Web (O’Reilly, 1998).

Can | press the buttons and otherwise interact with the controls of
my VI when I'm viewing it with a Web browser by using CGI?

Yes, in a somewhat limited manner as the example showed in this
chapter. The image of the remote VI front panel is simply that—an
image. It is not an ActiveX control or any other object that allows
you to enter information directly into it. As we have seen, one
method of providing VI interactivity for a remote client who is
viewing a VI using a Web browser is to use a combination of the
following:

1. An HTML image map to bind elements of the front-panel
image to CGI VI links that change the corresponding front-
panel values via VI Server. Any LabVIEW Boolean, slider,
and—to some extent—knob element or numeric, can be
“controlled” in this manner, given some tweaking of the
imagemap and the callback CGI VI. No changes are
required in the diagram of the VI being controlled.

2. HTML form elements, used in cases where simple clicks on
the VI image cannot provide the control that is required.
Examples are rings (which map to HTML form selection
elements) and arbitrary numeric settings (which map to
HTML form text entry boxes). Again, these form elements
are also processed by CGI Vs that change the value of the
front-panel elements via VI Server.

FAQs 313

For greater flexibility in the Web browser’s Ul, or to simulate a front
panel more accurately in a Web browser, you should use ActiveX
or Java controls—see the next two chapters.

Can | use CGl scripts or executables written in languages other
than G (Perl, Tcl, shell scripts, compiled code, etc.) to process
client requests?

No, not unless you come up with a modification to the Server code to
allow this. The problem here involves argument passing.
LabVIEW and the G Server do not have a convenient way to pass
the query string from a client’s browser to any CGI routine other
than those written in G. There is also no convenient way to access
the result of the non-LabVIEW script and pass it back to the client.
Similar limitations are encountered when using the System Exec
VI in LabVIEW.

Can other HTTP servers (httpd, etc.) make use of CGI routines
written in G? How about compiled CGI VIs?

No, for reasons similar to those in the preceding explanation. Native
CGI Vis would be completely unusable by other servers, and even
with compiled version there is the problem of argument passing.

